Struktura atomů a molekul Obrazová příloha

Michal Otyepka

tento text byl vysázen systémem LATEX2 $_{\varepsilon}$

ii

$\mathbf{\hat{U}}\mathbf{vod}$

Dokument obsahuje všechny obrázky tak, jak jsou uvedeny ve druhém vydání skript Struktura atomů a molekul z roku 2010.

 $\acute{U}VOD$

Elektromagnetické vlnění

Obrázek 1.1: Ultrafialová (UV - ultra violet), viditelná (VIS - visible) a infračervená (IR - infra red) oblast elektromagnetického spektra.

 $\mathbf{Obrázek}$ 1.2: Přehled fundamentálních částic, z nichž je složena hmota, a polních částic

Částice hmoty				Intermediální (polní) částice			
Kvarky		Leptony		Silná	Slabá	Gravitační	Elmag.
u nahoru	d dolů	eeektron	V _e el. neutrino	8x	W ⁺ boson	G graviton	γ foton
C krásný	S podivný	μ mion	V _µ mion. neutrino	gluon	W ⁻ boson		
t	b spodní	τ tauon	V _τ tau. neutrino		Z ⁰ boson		

Atom

Obrázek 2.1: Uspořádání Rutherfordova pokusu a ukázka průchodu α -částic zlatou fólií. Sám Rutherford komentoval výsledky experimentu slovy: "byla to ta nejneuvěřitelnější věc, která se mi v životě stala. Bylo to stejně neuvěřitelné, jako kdybyste střelili granátem proti papírovému kapesníku a on se vám vrátil!"

Obrázek 2.2: Graf známých nuklidů, zeleně jsou stabilní nuklidy, béžové jsou radionuklidy, nad nuklidem s Z=83 tedy Bi již neexistují stabilní nuklidy, převzato z literatury [?].

Obrázek 2.3: Schéma pro zobrazení emisních čárových spekter atomů a emisní čárová spektra atomů H, Hg a Ne ve viditelné oblasti.

Obrázek 2.4: Proces absorpce energie např. ve formě fotonu vede k excitaci do vzbuzeného stavu, z něhož atom může do základního stavu relaxovat za emise kvanta záření o stejné energii.

Obrázek 2.5: Vlnová funkce příslušející 1s orbitalu, její čtverec a hustota pravděpodobnosti.

Obrázek 2.6: Zobrazení maximálních hustot pravděpodobnosti pro běžné atomové orbitaly s až f.

Obrázek 2.7: Uspořádání Stern-Gerlachova experimentu, kde se svazek elektronů resp. atomů po průchodu nehomogenním magnetickým polem rozštěpí na dva.

Obrázek 2.8: Ukázka čar z běžného života. **A** obraz sodíkové výbojky na interferometru, patrný je i čárový dublet, **B** čárové spektrum neonu a **C** neonová trubice.

Obrázek 2.9: Energetické hladiny jednotlivých atomových orbitalů pro vodíku podobné atomy a obecné atomy s více elektrony.

KAPITOLA 2. ATOM

Molekula

Obrázek 3.1: Konstrukce vazebné ψ_+ a antivazebné ψ_- molekulové vlnové funkce z atomových orbitalů A a B a energetické schéma vzniku vazebného a antivazebného stavu.

Obrázek 3.2: Celková energie E v molekule vodíku v závislosti na vzdálenosti. E_D představuje disociační energii vazby, která je až na znaménko rovna vazebné energii. r_0 je ideální vazebná vzdálenost a představuje průměrnou vzdálenost dvou protonů, kolem které kmitají.

Obrázek 3.3: Schéma pro tvorbu molekulových orbitalů pro homonukleární dvouatomovou molekulu. Toto schéma je např. platné pro homonukleární diatomické molekuly prvků 2. periody, tedy pro Li₂, Be₂, B₂, C₂ a N₂. Pro O₂ a F₂ je energie orbitalu σ_{2p} nižší než energie orbitalů π_{2p} .

Obrázek 3.4: Tvar σ , σ^* a degenerovaných π , π^* molekulových orbitalů. Orbitaly jsou zobrazeny vždy ve dvou pohledech, kolmo ke spojnici jader a přes spojnici jader.

Obrázek 3.5: Tři možné kombinace p orbitalů, které vedou buď ke vzniku σ a π molekulových orbitalů.

Obrázek 3.6: Schéma kombinace atomových orbitalů (uvedeny jsou jejich energie) při tvorbě molekulových orbitalů molekuly HF.

-13.6 eV
$$\frac{1s}{\sigma}$$
 $\frac{n}{\sigma}$ $\frac{n}{2p}$ -19.9 eV
H $\frac{2s}{1s}$ $\frac{2s}{1s}$ F -718 eV

Obrázek 3.7: Obrázek ze skenovacího tunelovacího mikroskopu ukazuje jednotlivé atomy na povrchu Si.

Obrázek 3.8: Ukázky Lewisových strukturních vzorců.

Obrázek 3.9: Rezonanční stavy molekuly benzenu.

Obrázek 3.10: Geometrie molekul podle teorie VSEPR. U molekul amoniaku a vody jsou vyznačeny volné elektronové páry.

Obrázek 3.11: Ukázka geometrií spojených s běžnými typy hybridizace.

Obrázek 3.12: Ukázka a monopólu kladného náboje, b dipólu s označením směru dipólového momentu a ${\bf c}$ kvadrupólu.

Obrázek 3.13: Ukázka dipólu molekuly fluorovodíku a kvadrupólu molekuly vodíku.

Obrázek 3.14: Ukázka (**a**) části elektronového spektra jódu $I_2(g)$, kde je patrná jemná vibrační struktura. Energetické schéma elektronických hladin (**b**) s vyznačenou vibrační strukturou a vyznačeným vertikálním přechodem, který bude nejintenzivnější.

 ${\bf Obrázek}$ 3.16: Jablonského diagram, znázorňující možné monomolekulární relaxační procesy.

Obrázek 3.17: Ukázka absorpčního a fluorescenčního spektra, které je zrcadlovým obrazem spektra absorpčního a je posunuté do červené oblasti.

Obrázek 3.18: S rostoucí koncentrací intenzita zbarvení vzorku roste.

koncentrace

Kmity a rotace molekul

Obrázek 4.1: Jádra v molekule neustále kmitají jakoby byla spojena malou pružinou, pro popis kmitání v molekule se používá model harmonického oscilátoru (šedá křivka), kde jsou vzdálenosti mezi jednotlivými hladinami stejné a rovné $h\nu$, pro anharmonický oscilátor se vzdálenosti jednotlivých hladin zmenšují.

Obrázek 4.2: Vibrační spektrum vody v plynné (\mathbf{a}) a kapalné fázi (\mathbf{b}), v kondenzované fázi se ztrácí jemná rotační struktura spektra.

Nekovalentní komplexy

Obrázek 5.1: Popis interakce dvou dipólů μ_i a μ_j a geometrické schéma pro maximální přitažlivou interakci dvou dipólů a maximální odpudivou interakci dvou dipólů.

Obrázek 5.2: Molekula vody nese významný dipólový moment.

Obrázek 5.3: Koplanární dimer benzenu (vlevo) také patří mezi molekulové komplexy, které jsou dominantně vázány disperzní interakcí. Disperzní interakce se také významnou měrou uplatňuje mezi patry párů bazí v DNA a přispívá ke stabilitě dvojšroubovice DNA (vpravo).

Obrázek 5.4: Van der Waalsovy síly jsou často chápány jako součet disperzních a

Obrázek 5.5: Molekula vody může vytvářet až čtyři vodíkové vazby (\mathbf{a}) , významnou roli hrají vodíkové vazby při párování bazí nukleových kyselin (\mathbf{b}) .

Obrázek 5.6: Molekula CH₃OCl a její elektrostatický potenciál, σ -hole je označena červenou šipkou.

Obrázek 5.7: Dva mezimolekulové komplexy HF s ClF, komplex A se váže vodíkovou vazbou a komplex B halogenovou vazbou.

Obrázek 5.8: Kondenzované fáze (**A**) se vyznačují vysokou hustotou a nelze v nich zanedbávat mezimolekulové interakce. Šest molekul vod (**B**) vytváří první vrstvu solvatačního obalu kationtu Mg^{2+} . Tentýž obal znázorněný schématicky (**C**).

Plocha potenciální energie

Obrázek 6.1: Panel A ukazuje plochu potenciální energie E závislou na dvou proměnných x_1 a x_2 , vedlejší panel zobrazuje tutéž plochu ve formě mapy. Bod R představuje reaktanty a bod P produkty.

Obrázek 6.2: Reakční koordináta je řezem energetické hyperplochy podél energeticky nejefektivnějšího průběhu chemické reakce z reaktantů do produktů přes tranzitní stav. Energetický rozdíl mezi reaktanty a tranzitním stavem představuje bariéru chemické reakce, která se projevuje v její rychlosti, tedy kinetice. Energetický rozdíl mezi reaktanty a produkty se pak projevuje v tepelném zabarvení reakce, tedy její termodynamice.

reakční koordináta

Obrázek 6.3: Panel A ukazuje srovnání reakční koordináty nekatalyzované reakce (přerušovaně) s reakční koordinátou za přítomnosti katalyzátoru, jehož přítomnost vede ke snížení aktivační bariéry a tedy ke zvýšení rychlosti reakce. Panel B ukazuje srovnání dvou reakčních cest z reaktantu R do údolí produktů P' a P. Z pohledu termodynamiky jsou výhodnější produkty P, ale bude-li bariéra pro přechod z R do P oproti bariéře R-P' výrazně vyšší, bude pozorován vznik produktů P'. V takovém případě jde o kineticky řízenou reakci.

Obrázek 6.4: Princip fotochemických reakcí spočívá v převedení reaktantů ze základního stavu do stavu excitovaného, který může přes kónické křížení relaxovat do údolí produktů.

reakční koordináta

Seznam obrázků

1.1	Ultrafialová (UV - ultra violet), viditelná (VIS - visible) a infračervená (IR - infra red) oblast elektromagnetického spektra.	1
1.2	Přehled fundamentálních částic, z nichž je složena hmota, a polních částic	1
2.1	Uspořádání Rutherfordova pokusu a ukázka průchodu α-částic zlatou fólií. Sám Rutherford komentoval výsledky experimentu slovy: "byla to ta nejneuvěřitelnější věc, která se mi v životě stala. Bylo to stejně neuvěřitelné, jako kdybyste střelili granátem proti papírovému kapes- níku a on se vám vrátil!"	3
2.2	Graf známých nuklidů, zeleně jsou stabilní nuklidy, béžové jsou radi- onuklidy, nad nuklidem s Z=83 tedy Bi již neexistují stabilní nuklidy, převzato z literatury [?]	4
2.3	Schéma pro zobrazení emisních čárových spekter atomů a emisní čárová spektra atomů H, Hg a Ne ve viditelné oblasti.	4
2.4	Proces absorpce energie např. ve formě fotonu vede k excitaci do vzbu- zeného stavu, z něhož atom může do základního stavu relaxovat za emise kvanta záření o stejné energii.	5
2.5	Vlnová funkce příslušející 1s orbitalu, její čtverec a hustota pravděpo- dobnosti.	5
2.6	Zobrazení maximálních hustot pravděpodobnosti pro běžné atomové orbitaly s až f.	6
2.7	Uspořádání Stern-Gerlachova experimentu, kde se svazek elektronů resp. atomů po průchodu nehomogenním magnetickým polem rozštěpí na dva.	6
2.8	Ukázka čar z běžného života. A obraz sodíkové výbojky na interfe- rometru, patrný je i čárový dublet, B čárové spektrum neonu a C neonová trubice.	7
2.9	Energetické hladiny jednotlivých atomových orbitalů pro vodíku po- dobné atomy a obecné atomy s více elektrony	7

3.1	Konstrukce vazebné ψ_+ a antivazebné ψ molekulové vlnové funkce z atomových orbitalů A a B a energetické schéma vzniku vazebného	
	a antivazebného stavu	9
3.2	Celková energie E v molekule vodíku v závislosti na vzdálenosti. E_D	
	představuje disociační energii vazby, která je až na znaménko rovna	
	vazebné energii. r_0 je ideální vazebná vzdálenost a představuje prů-	
	měrnou vzdálenost dvou protonů, kolem které kmitají	10
3.3	Schéma pro tvorbu molekulových orbitalů pro homonukleární dvou-	
	atomovou molekulu. Toto schéma je např. platné pro homonukleární	
	diatomické molekuly prvků 2. periody, tedy pro Li ₂ , Be ₂ , B ₂ , C ₂ a N ₂ .	
	Pro O ₂ a F ₂ je energie orbitalu σ_{2p} nižší než energie orbitalů π_{2p}	10
3.4	Tvar σ , σ^* a degenerovaných π , π^* molekulových orbitalů. Orbitaly	
	jsou zobrazeny vždy ve dvou pohledech, kolmo ke spojnici jader a přes	
	spojnici jader.	11
3.5	Tři možné kombinace p orbitalů, které vedou buď ke vzniku σ a π	
	molekulových orbitalů.	11
3.6	Schéma kombinace atomových orbitalů (uvedeny jsou jejich energie)	
	při tvorbě molekulových orbitalů molekuly HF.	12
3.7	Obrázek ze skenovacího tunelovacího mikroskopu ukazuje jednotlivé	
	atomy na povrchu Si	12
3.8	Ukázky Lewisových strukturních vzorců	12
3.9	Rezonanční stavy molekuly benzenu.	12
3.10	Geometrie molekul podle teorie VSEPR. U molekul amoniaku a vody	
	jsou vyznačeny volné elektronové páry.	13
3.11	Ukázka geometrií spojených s běžnými typy hybridizace	13
3.12	Ukázka a monopólu kladného náboje. b dipólu s označením směru	
	dipólového momentu a c kvadrupólu	13
3.13	Ukázka dipólu molekuly fluorovodíku a kvadrupólu molekuly vodíku.	14
3.14	Ukázka (a) části elektronového spektra jódu $I_2(a)$, kde je patrná jemná	
	vibrační struktura. Energetické schéma elektronických hladin (b) s vy-	
	značenou vibrační strukturou a vyznačeným vertikálním přechodem.	
	který bude nejintenzivnější.	14
3.15	Ukázka UV/VIS spektra roztoku KMnO4	15
3.16	Jablonského diagram, znázorňující možné monomolekulární relaxační	
	procesy	15
3.17	Ukázka absorpčního a fluorescenčního spektra, které je zrcadlovým	
	obrazem spektra absorpčního a je posunuté do červené oblasti.	16
3.18	S rostoucí koncentrací intenzita zbarvení vzorku roste.	16
		-
4.1	Jádra v molekule neustále kmitají jakoby byla spojena malou pruži-	
	nou, pro popis kmitání v molekule se používá model harmonického	
	oscilátoru (šedá křivka), kde jsou vzdálenosti mezi jednotlivými hla-	
	dinami stejné a rovné $h\nu,$ pro anharmonický oscilátor se vzdálenosti	
	jednotlivých hladin zmenšují.	17

28

SEZNAM OBRÁZKŮ

Vibrační spektrum vody v plynné (a) a kapalné fázi (b), v kondenzované fázi se ztrácí jemná rotační struktura spektra	18
Popis interakce dvou dipólů μ_i a μ_j a geometrické schéma pro maxi- mální přitažlivou interakci dvou dipólů a maximální odpudivou inter- akci dvou dipólů.	19
Molekula vody nese významný dipólový moment.	20
Koplanární dimer benzenu (vlevo) také patří mezi molekulové kom- plexy, které jsou dominantně vázány disperzní interakcí. Disperzní interakce se také významnou měrou uplatňuje mezi patry párů bazí v DNA a přispívá ke stabilitě dvojšroubovice DNA (vpravo).	20
Van der Waalsovy síly jsou často chápány jako součet disperzních a repulzních sil	21
Molekula vody může vytvářet až čtyři vodíkové vazby (a), významnou roli hrají vodíkové vazby při párování bazí nukleových kyselin (b)	21
Molekula CH ₃ OCl a její elektrostatický potenciál, σ -hole je označena červenou šipkou.	22
Dva mezimolekulové komplexy HF s ClF, komplex A se váže vodíkovou vazbou a komplex B halogenovou vazbou.	22
Kondenzované fáze (A) se vyznačují vysokou hustotou a nelze v nich zanedbávat mezimolekulové interakce. Šest molekul vod (B) vytváří první vrstvu solvatačního obalu kationtu Mg^{2+} . Tentýž obal znázorněný schématicky (C).	22
Panel A ukazuje plochu potenciální energie E závislou na dvou pro- měnných x_1 a x_2 , vedlejší panel zobrazuje tutéž plochu ve formě mapy. Bod R představuje reaktanty a bod P produkty.	23
Reakční koordináta je řezem energetické hyperplochy podél energe- ticky nejefektivnějšího průběhu chemické reakce z reaktantů do pro- duktů přes tranzitní stav. Energetický rozdíl mezi reaktanty a tran- zitním stavem představuje bariéru chemické reakce, která se proje- vuje v její rychlosti, tedy kinetice. Energetický rozdíl mezi reaktanty a produkty se pak projevuje v tepelném zabarvení reakce, tedy její termodynamice	24
Panel A ukazuje srovnání reakční koordináty nekatalyzované reakce (přerušovaně) s reakční koordinátou za přítomnosti katalyzátoru, je- hož přítomnost vede ke snížení aktivační bariéry a tedy ke zvýšení rychlosti reakce. Panel B ukazuje srovnání dvou reakčních cest z re- aktantu R do údolí produktů P' a P. Z pohledu termodynamiky jsou výhodnější produkty P, ale bude-li bariéra pro přechod z R do P oproti bariéře R-P' výrazně vyšší, bude pozorován vznik produktů P'. V takovém případě jde o kineticky řízenou reakci.	25
	Vibrační spektrum vody v plynné (a) a kapalné fázi (b), v kondenzované fázi se ztrácí jemná rotační struktura spektra Popis interakce dvou dipólů μ_i a μ_j a geometrické schéma pro maximální přitažlivou interakci dvou dipólů a maximální odpudivou interakci dvou dipólů

6.4	Princip fotochemických reakcí spočívá v převedení reaktantů ze zá-	
	kladního stavu do stavu excitovaného, který může přes kónické křížení	
	relaxovat do údolí produktů.	26

30